Alat mekanik dan fungsinya
Friday, June 7, 2013
Saturday, October 29, 2011
Komputer
Sejarah komputer sudah dimulai sejak zaman dahulu kala. Sejak dahulu kala, proses pengolahan data telah dilakukan oleh manusia. Manusia juga menemukan alat-alat mekanik dan elektronik (mechanical and electronic) untuk membantu manusia dalam penghitungan dan pengolahan data supaya bisa mendapatkan hasil lebih cepat. Computer yang kita temui saat ini adalah suatu evolusi panjang dari penemuan-penemuan manusia sejak dahulu kala berupa alat mekanik (mechanical) maupun elektronik (electronic)
Saat ini komputer dan piranti pendukungnya telah masuk dalam setiap aspek kehidupan dan pekerjaan. Computer yang ada sekarang memiliki kemampuan yang lebih dari sekedar perhitungan mathematics biasa. Diantaranya adalah sistem komputer di kassa supermarket yang mampu membaca kode barang belanja, sentral telephone yang menangani jutaan panggilan dan komunikasi, jaringan komputer dan internet yang menghubungkan berbagai tempat di dunia.
Sejarah Komputer menurut periodenya adalah:
* Alat Hitung Tradisional dan Kalkulator Mekanik
* Komputer Generasi Pertama
* Komputer Generasi Kedua
* Komputer Generasi Ketiga
* Komputer Generasi Keempat
* Komputer Generasi Kelima
ALAT HITUNG TRADISIONAL dan KALKULATOR MEKANIKAbacus, yang muncul sekitar 5000 tahun yang lalu di Asia kecil dan masih digunakan di beberapa tempat hingga saat ini dapat dianggap sebagai awal mula mesin komputasi.Alat ini memungkinkan penggunanya untuk melakukan perhitungan menggunakan biji-bijian geser yang diatur pada sebuah rak. Para pedagang di masa itu menggunakan abacus untuk menghitung transaksi perdagangan. Seiring dengan munculnya pensil dan kertas, terutama di Eropa, abacus kehilangan popularitasnya
Setelah hampir 12 abad, muncul penemuan lain dalam hal mesin komputasi. Pada tahun 1642, Blaise Pascal (1623-1662), yang pada waktu itu berumur 18 tahun, menemukan apa yang ia sebut sebagai kalkulator roda numerik (numerical wheel calculator) untuk membantu ayahnya melakukan perhitungan pajak
Kotak persegi kuningan ini yang dinamakan Pascaline, menggunakan delapan roda putar bergerigi untuk menjumlahkan bilangan hingga delapan digit. Alat ini merupakan alat penghitung bilangan berbasis sepuluh. Kelemahan alat ini adalah hanya terbatas untuk melakukan penjumlahan
Tahun 1694, seorang matematikawan dan filsuf Jerman, Gottfred Wilhem von Leibniz (1646-1716) memperbaiki Pascaline dengan membuat mesin yang dapat mengalikan. Sama seperti pendahulunya, alat mekanik ini bekerja dengan menggunakan roda-roda gerigi. Dengan mempelajari catatan dan gambar-gambar yang dibuat oleh Pascal, Leibniz dapat menyempurnakan alatnya.
Barulah pada tahun 1820, kalkulator mekanik mulai populer. Charles Xavier Thomas de Colmar menemukan mesin yang dapat melakukan empat fungsi aritmatik dasar. Kalkulator mekanik Colmar, arithometer, mempresentasikan pendekatan yang lebih praktis dalam kalkulasi karena alat tersebut dapat melakukan penjumlahan, pengurangan, perkalian, dan pembagian. Dengan kemampuannya, arithometer banyak dipergunakan hingga masa Perang Dunia I. Bersama-sama dengan Pascal dan Leibniz, Colmar membantu membangun era komputasi mekanikal.
Awal mula komputer yang sebenarnya dibentuk oleh seorang profesor matematika Inggris, Charles Babbage (1791-1871). Tahun 1812, Babbage memperhatikan kesesuaian alam antara mesin mekanik dan matematika yaitu mesin mekanik sangat baik dalam mengerjakan tugas yang sama berulangkali tanpa kesalahan; sedang matematika membutuhkan repetisi sederhana dari suatu langkah-langkah tertenu. Masalah tersebut kemudain berkembang hingga menempatkan mesin mekanik sebagai alat untuk menjawab kebutuhan mekanik. Usaha Babbage yang pertama untuk menjawab masalah ini muncul pada tahun 1822 ketika ia mengusulkan suatu mesin untuk melakukanperhitungan persamaan differensial. Mesin tersebut dinamakan Mesin Differensial. Dengan menggunakan tenaga uap, mesin tersebut dapat menyimpan program dan dapat melakukan kalkulasi serta mencetak hasilnya secara otomatis.
Setelah bekerja dengan Mesin Differensial selama sepuluh tahun, Babbage tiba-tiba terinspirasi untuk memulai membuat komputer general-purpose yang pertama, yang disebut Analytical Engine. Asisten Babbage, Augusta Ada King (1815-1842) memiliki peran penting dalam pembuatan mesin ini. Ia membantu merevisi rencana, mencari pendanaan dari pemerintah Inggris, dan mengkomunikasikan spesifikasi Analytical Engine kepada publik. Selain itu, pemahaman Augusta yang baik tentang mesin ini memungkinkannya membuat instruksi untuk dimasukkan ke dalam mesin dan juga membuatnya menjadi programmer wanita yang pertama. Pada tahun 1980, Departemen Pertahanan Amerika Serikat menamakan sebuah bahasa pemrograman dengan nama ADA sebagai penghormatan kepadanya.
Mesin uap Babbage, walaupun tidak pernah selesai dikerjakan, tampak sangat primitif apabila dibandingkan dengan standar masa kini. Bagaimanapun juga, alat tersebut menggambarkan elemen dasar dari sebuah komputer modern dan juga mengungkapkan sebuah konsep penting. Terdiri dari sekitar 50.000 komponen, disain dasar dari Analytical Engine menggunakan kartu-kartu perforasi (berlubang-lubang) yang berisi instruksi operasi bagi mesin tersebut.
Pada 1889, Herman Hollerith (1860-1929) juga menerapkan prinsip kartu perforasi untuk melakukan penghitungan. Tugas pertamanya adalah menemukan cara yang lebih cepat untuk melakukan perhitungan bagi Biro Sensus Amerika Serikat. Sensus sebelumnya yang dilakukan di tahun 1880 membutuhkan waktu tujuh tahun untuk menyelesaikan perhitungan. Dengan berkembangnya populasi, Biro tersebut memperkirakan bahwa dibutuhkan waktu sepuluh tahun untuk menyelesaikan perhitungan sensus.
Hollerith menggunakan kartu perforasi untuk memasukkan data sensus yang kemudian diolah oleh alat tersebut secara mekanik. Sebuah kartu dapat menyimpan hingga 80 variabel. Dengan menggunakan alat tersebut, hasil sensus dapat diselesaikan dalam waktu enam minggu. Selain memiliki keuntungan dalam bidang kecepatan, kartu tersebut berfungsi sebagai media penyimpan data. Tingkat kesalahan perhitungan juga dapat ditekan secara drastis. Hollerith kemudian mengembangkan alat tersebut dan menjualnya ke masyarakat luas. Ia mendirikan Tabulating Machine Company pada tahun 1896 yang kemudian menjadi International Business Machine (1924) setelah mengalami beberapa kali merger. Perusahaan lain seperti Remington Rand and Burroghs juga memproduksi alat pembaca kartu perforasi untuk usaha bisnis. Kartu perforasi digunakan oleh kalangan bisnis dn pemerintahan untuk permrosesan data hingga tahun 1960.
Pada masa berikutnya, beberapa insinyur membuat penemuan baru lainnya. Vannevar Bush (18901974) membuat sebuah kalkulator untuk menyelesaikan persamaan differensial di tahun 1931. Mesin tersebut dapat menyelesaikan persamaan differensial kompleks yang selama ini dianggap rumit oleh kalangan akademisi. Mesin tersebut sangat besar dan berat karena ratusan gerigi dan poros yang dibutuhkan untuk melakukan perhitungan. Pada tahun 1903, John V. Atanasoff dan Clifford Berry mencoba membuat komputer elektrik yang menerapkan aljabar Boolean pada sirkuit elektrik. Pendekatan ini didasarkan pada hasil kerja George Boole (1815-1864) berupa sistem biner aljabar, yang menyatakan bahwa setiap persamaan matematik dapat dinyatakan sebagai benar atau salah. Dengan mengaplikasikan kondisi benar-salah ke dalam sirkuit listrik dalam bentuk terhubung-terputus, Atanasoff dan Berry membuat komputer elektrik pertama di tahun 1940. Namun proyek mereka terhenti karena kehilangan sumber pendanaan.
Dengan terjadinya Perang Dunia Kedua, negara-negara yang terlibat dalam perang tersebut berusaha mengembangkan komputer untuk mengeksploitasi potensi strategis yang dimiliki komputer. Hal ini meningkatkan pendanaan pengembangan komputer serta mempercepat kemajuan teknik komputer. Pada tahun 1941, Konrad Zuse, seorang insinyur Jerman membangun sebuah komputer Z3, untuk mendisain pesawat terbang dan peluru kendali.
Pihak sekutu juga membuat kemajuan lain dalam pengembangan kekuatan komputer. Tahun 1943, pihak Inggris menyelesaikan komputer pemecah kode rahasia yang dinamakan Colossus untuk memecahkan kode-rahasia yang digunakan Jerman. Dampak pembuatan Colossus tidak terlalu mempengaruhi perkembangan industri komputer dikarenakan dua alasan. Pertama, colossus bukan merupakan komputer serbaguna general-purpose computer), ia hanya didisain untuk memecahkan kode rahasia. Kedua, keberadaan mesin ini dijaga kerahasiaannya hingga satu dekade setelah perang berakhir.
Usaha yang dilakukan oleh pihak Amerika pada saat itu menghasilkan suatu kemajuan lain. Howard H. Aiken (1900-1973), seorang insinyur Harvard yang bekerja dengan IBM, berhasil memproduksi kalkulator elektronik untuk US Navy. Kalkulator tersebut berukuran panjang setengah lapangan bola kaki dan memiliki rentang kabel sepanjang 500 mil. The Harvd-IBM Automatic Sequence Controlled Calculator, atau Mark I, merupakan komputer relai elektronik. Ia menggunakan sinyal elektromagnetik untuk menggerakkan komponen mekanik. Mesin tersebut beropreasi dengan lambat (ia membutuhkan 3-5 detik untuk setiap perhitungan) dan tidak fleksibel (urutan kalkulasi tidak dapat diubah). Kalkulator tersebut dapat melakukan perhitungan aritmatik dasar dan persamaan yang lebih kompleks.
Perkembangan komputer lain pada masa ini adalah Electronic Numerical Integrator and Computer (ENIAC), yang dibuat oleh kerjasama antara pemerintah Amerika Serikat dan University of Pennsylvania. Terdiri dari 18.000 tabung vakum, 70.000 resistor, dan 5 juta titik solder, komputer tersebut merupakan mesin yang sangat besar yang mengkonsumsi daya sebesar 160kW. Komputer ini dirancang oleh John Presper Eckert (1919-1995) dan John W. Mauchly (1907-1980), ENIAC merupakan komputer serbaguna (general purpose computer) yang bekerja 1000 kali lebih cepat dibandingkan Mark I.Pada pertengahan 1940-an, John von Neumann (1903-1957) bergabung dengan tim University of Pennsylvania dalam usha membangun konsep desin komputer yang hingga 40 tahun mendatang masih dipakai dalam teknik komputer.
Von Neumann mendesain Electronic Discrete Variable AutomaticComputer(EDVAC) pada tahun 1945 dengan sebuah memori untuk menampung baik program ataupun data. Teknik ini memungkinkan komputer untuk berhenti pada suatu saat dan kemudian melanjutkan pekerjaannya kembali. Kunci utama arsitektur von Neumann adalah unit pemrosesan sentral (CPU), yang memungkinkan seluruh fungsi komputer untuk dikoordinasikan melalui satu sumber tunggal. Tahun 1951, UNIVAC I (Universal Automatic Computer I) yang dibuat oleh Remington Rand, menjadi komputer komersial pertama yang memanfaatkan model arsitektur von Neumann tersebut. Baik Badan Sensus Amerika Serikat dan General Electric memiliki UNIVAC. Salah satu hasil mengesankan yang dicapai oleh UNIVAC dalah keberhasilannya dalam memprediksi kemenangan Dwilight D. Eisenhower dalam pemilihan presiden tahun 1952.
Komputer Generasi pertama dikarakteristik dengan fakta bahwa instruksi operasi dibuat secara spesifik untuk suatu tugas tertentu. Setiap komputer memiliki program kode-biner yang berbeda yang disebut “bahasa mesin” (machine language). Hal ini menyebabkan komputer sulit untuk diprogram dan membatasi kecepatannya. Ciri lain komputer generasi pertama adalah penggunaan tube vakum (yang membuat komputer pada masa tersebut berukuran sangat besar) dan silinder magnetik untuk penyimpanan data.
Pada tahun 1948, penemuan transistor sangat mempengaruhi perkembangan komputer. Transistor menggantikan tube vakum di televisi, radio, dan komputer. Akibatnya, ukuran mesin-mesin elektrik berkurang drastis. Transistor mulai digunakan di dalam komputer mulai pada tahun 1956. Penemuan lain yang berupa pengembangan memori inti-magnetik membantu pengembangan komputer generasi kedua yang lebih kecil, lebih cepat, lebih dapat diandalkan, dan lebih hemat energi dibanding para pendahulunya. Mesin pertama yang memanfaatkan teknologi baru ini adalah superkomputer. IBM membuat superkomputer bernama Stretch, dan Sprery-Rand membuat komputer bernama LARC. Komputer-komputer ini, yang dikembangkan untuk laboratorium energi atom, dapat menangani sejumlah besar data, sebuah kemampuan yang sangat dibutuhkan oleh peneliti atom. Mesin tersebut sangat mahal dan cenderung terlalu kompleks untuk kebutuhan komputasi bisnis, sehingga membatasi kepopulerannya. Hanya ada dua LARC yang pernah dipasang dan digunakan: satu di Lawrence Radiation Labs di Livermore, California, dan yang lainnya di US Navy Research and Development Center di Washington D.C. Komputer generasi kedua menggantikan bahasa mesin dengan bahasa assembly. Bahasa assembly adalah bahasa yang menggunakan singkatan-singkatan untuk menggantikan kode biner.
Pada awal 1960-an, mulai bermunculan komputer generasi kedua yang sukses di bidang bisnis, di universitas, dan di pemerintahan. Komputer-komputer generasi kedua ini merupakan komputer yang sepenuhnya menggunakan transistor. Mereka juga memiliki komponen-komponen yang dapat diasosiasikan dengan komputer pada saat ini: printer, penyimpanan dalam disket, memory, sistem operasi, dan program. Salah satu contoh penting komputer pada masa ini adalah IBM 1401 yang diterima secara luas di kalangan industri. Pada tahun 1965, hampir seluruh bisnis-bisnis besar menggunakan komputer generasi kedua untuk memproses informasi keuangan.
Program yang tersimpan di dalam komputer dan bahasa pemrograman yang ada di dalamnya memberikan fleksibilitas kepada komputer. Fleksibilitas ini meningkatkan kinerja dengan harga yang pantas bagi penggunaan bisnis. Dengan konsep ini, komputer dapat mencetak faktur pembelian konsumen dan kemudian menjalankan desain produk atau menghitung daftar gaji. Beberapa bahasa pemrograman mulai bermunculan pada saat itu. Bahasa pemrograman Common Business-Oriented Language (COBOL) dan Formula Translator (FORTRAN) mulai umum digunakan. Bahasa pemrograman ini menggantikan kode mesin yang rumit dengan kata-kata, kalimat, dan formula matematika yang lebih mudah dipahami oleh manusia. Hal ini memudahkan seseorang untuk memprogram dan mengatur komputer. Berbagai macam karir baru bermunculan (programmer, analyst, dan ahli sistem komputer). Industri piranti lunak juga mulai bermunculan dan berkembang pada masa komputer generasi kedua ini.
Walaupun transistor dalam banyak hal mengungguli tube vakum, namun transistor menghasilkan panas yang cukup besar, yang dapat berpotensi merusak bagian-bagian internal komputer. Batu kuarsa (quartz rock) menghilangkan masalah ini. Jack Kilby, seorang insinyur di Texas Instrument, mengembangkan sirkuit terintegrasi (IC: integrated circuit) di tahun 1958. IC mengkombinasikan tiga komponen elektronik dalam sebuah piringan silikon kecil yang terbuat dari pasir kuarsa. Para ilmuwan kemudian berhasil memasukkan lebih banyak komponen-komponen ke dalam suatu chip tunggal yang disebut semikonduktor. Hasilnya, komputer menjadi semakin kecil karena komponen-komponen dapat dipadatkan dalam chip. Kemajuan komputer generasi ketiga lainnya adalah penggunaan sistem operasi (operating system) yang memungkinkan mesin untuk menjalankan berbagai program yang berbeda secara serentak dengan sebuah program utama yang memonitor dan mengkoordinasi memori komputer.
Setelah IC, tujuan pengembangan menjadi lebih jelas yaitu mengecilkan ukuran sirkuit dan komponen-komponen elektrik. Large Scale Integration (LSI) dapat memuat ratusan komponen dalam sebuah chip. Pada tahun 1980-an, Very Large Scale Integration (VLSI) memuat ribuan komponen dalam sebuah chip tunggal.Ultra-Large Scale Integration (ULSI) meningkatkan jumlah tersebut menjadi jutaan. Kemampuan untuk memasang sedemikian banyak komponen dalam suatu keping yang berukuran setengah keping uang logam mendorong turunnya harga dan ukuran komputer. Hal tersebut juga meningkatkan daya kerja, efisiensi dan kehandalan komputer. Chip Intel 4004 yang dibuat pada tahun 1971 membawa kemajuan pada IC dengan meletakkan seluruh komponen dari sebuah komputer (central processing unit, memori, dan kendali input/output) dalam sebuah chip yangsangat kecil. Sebelumnya, IC dibuat untuk mengerjakan suatu tugas tertentu yang spesifik. Sekarang, sebuah mikroprosesor dapat diproduksi dan kemudian diprogram untuk memenuhi seluruh kebutuhan yang diinginkan. Tidak lama kemudian, setiap perangkat rumah tangga seperti microwave oven, televisi, dan mobil dengan electronic fuel injection dilengkapi dengan mikroprosesor.
Perkembangan yang demikian memungkinkan orang-orang biasa untuk menggunakan komputer biasa. Komputer tidak lagi menjadi dominasi perusahaan-perusahaan besar atau lembaga pemerintah. Pada pertengahan tahun 1970-an, perakit komputer menawarkan produk komputer mereka ke masyarakat umum. Komputer-komputer ini, yang disebut minikomputer, dijual dengan paket piranti lunak yang mudah digunakan oleh kalangan awam. Piranti lunak yang paling populer pada saat itu adalah program word processing dan spreadsheet. Pada awal 1980-an, video game seperti Atari 2600 menarik perhatian konsumen pada komputer rumahan yang lebih canggih dan dapat diprogram.Pada tahun 1981, IBM memperkenalkan penggunaan Personal Computer (PC) untuk penggunaan di rumah, kantor, dan sekolah. Jumlah PC yang digunakan melonjak dari 2 juta unit di tahun 1981 menjadi 5,5 juta unit di tahun 1982. Sepuluh tahun kemudian, 65 juta PC digunakan. Komputer melanjutkan evolusinya menuju ukuran yang lebih kecil, dari komputer yang berada di atas meja (desktop computer) menjadi komputer yang dapat dimasukkan ke dalam tas (laptop), atau bahkan komputer yang dapat digenggam (palmtop).
IBM PC bersaing dengan Apple Macintosh dalam memperebutkan pasar komputer. Apple Macintosh menjadi terkenal karena mempopulerkan sistem grafis pada komputernya, sementara saingannya masih menggunakan komputer yang berbasis teks. Macintosh juga mempopulerkan penggunaan piranti mouse.
Pada masa sekarang, kita mengenal perjalanan IBM compatible dengan pemakaian CPU: IBM PC/486, Pentium, Pentium II, Pentium III, Pentium IV (Serial dari CPU buatan Intel). Juga kita kenal AMD k6, Athlon, dsb. Ini semua masuk dalam golongan komputer generasi keempat. Seiring dengan menjamurnya penggunaan komputer di tempat kerja, cara-cara baru untuk menggali potensi terus dikembangkan. Seiring dengan bertambah kuatnya suatu komputer kecil, komputer-komputer tersebut dapat dihubungkan secara bersamaan dalam suatu jaringan untuk saling berbagi memori, piranti lunak, informasi, dan juga untuk dapat saling berkomunikasi satu dengan yang lainnya. Komputer jaringan memungkinkan komputer tunggal untuk membentuk kerjasama elektronik untuk menyelesaikan suatu proses tugas. Dengan menggunakan perkabelan langsung (disebut juga local area network, LAN), atau kabel telepon, jaringan ini dapat berkembang menjadi sangat besar.
Mendefinisikan komputer generasi kelima menjadi cukup sulit karena tahap ini masih sangat muda. Contoh imajinatif komputer generasi kelima adalah komputer fiksi HAL9000 dari novel karya Arthur C. Clarke berjudul 2001:Space Odyssey. HAL menampilkan seluruh fungsi yang diinginkan dari sebuah komputer generasi kelima. Dengan kecerdasan buatan (artificial intelligence), HAL dapat cukup memiliki nalar untuk melakukan percapakan dengan manusia, menggunakan masukan visual, dan belajar dari pengalamannya sendiri.
Walaupun mungkin realisasi HAL9000 masih jauh dari kenyataan, banyak fungsi-fungsi yang dimilikinya sudah terwujud. Beberapakomputer dapat menerima instruksi secara lisan dan mampu meniru nalar manusia. Kemampuan untuk menterjemahkan bahasa asing juga menjadi mungkin. Fasilitas ini tampak sederhan. Namun fasilitas tersebut menjadi jauh lebih rumit dari yang diduga ketika programmer menyadari bahwa pengertian manusia sangat bergantung pada konteks dan pengertian daripada sekedar menterjemahkan kata-kata secara langsung.
Banyak kemajuan di bidang disain komputer dan teknologi semakin memungkinkan pembuatan komputer generasi kelima. Dua kemajuan rekayasa yang terutama adalah kemampuan pemrosesan paralel, yang akan menggantikan model von Neumann. Model von Neumann akan digantikan dengan sistem yang mampu mengkoordinasikan banyak CPU untuk bekerja secara serempak. Kemajuan lain adalah teknologi superkonduktor yang memungkinkan aliran elektrik tanpa ada hambatan apapun, yang nantinya dapat mempercepat kecepatan informasi.
Jepang adalah negara yang terkenal dalam sosialisasi jargon dan proyek komputer generasi kelima. Lembaga ICOT (Institute for new Computer Technology) juga dibentuk untuk merealisasikannya. Banyak kabar yang menyatakan bahwa proyek ini telah gagal, namun beberapa informasi lain bahwa keberhasilan proyek komputer generasi kelima ini akan membawa perubahan baru paradigma komputerisasi di dunia. Kita tunggu informasi mana yang lebih valid dan membuahkan hasil
MESIN BUBUT CNC
mesin cnc
1. Pendahuluan
Awal lahirnya mesin CNC (Computer Numerically Controlled) bermula dari 1952 yang dikembangkan oleh John Pearseon dari Institut Teknologi Massachusetts, atas nama Angkatan Udara Amerika Serikat. Semula proyek tersebut diperuntukkan untuk membuat benda kerja khusus yang rumit. Semula perangkat mesin CNC memerlukan biaya yang tinggi dan volume unit pengendali yang besar. Pada tahun 1973, mesin CNC masih sangat mahal sehingga masih sedikit perusahaan yang mempunyai keberanian dalam mempelopori investasi dalam teknologi ini. Dari tahun 1975, produksi mesin CNC mulai berkembang pesat. Perkembangan ini dipacu oleh perkembangan mikroprosesor, sehingga volume unit pengendali dapat lebih ringkas.
Dewasa ini penggunaan mesin CNC hampir terdapat di segala bidang. Dari bidang pendidikan dan riset yang mempergunakan alat-alat demikian dihasilkan berbagai hasil penelitian yang bermanfaat yang tidak terasa sudah banyak digunakan dalam kehidupan sehari-hari masyarakat banyak.
2. Jenis Mesin CNC
Di industri menengah dan besar, akan banyak dijumpai penggunaan mesin CNC dalam mendukung proses produksi. Secara garis besar, mesin CNC dibagi dalam 2 (dua) macam, yaitu :
a. Mesin bubut CNC
b. Mesin frais CNC
Gambar 1. Mesin Bubut CNC
Gambar 2. Mesin Frais CNC
3. Cara Mengoparasikan Mesin CNC
Secara umum, cara mengoperasikan mesin CNC dengan cara memasukkan perintah numeric melalaui tombol-tombol yang tersedia pada panel instrument di tiap-
tiap mesin. Setiap jenis mesin CNC mempunyai karakteristik tersendiri sesuai dengan pabrik yang membuat mesin tersebut. Namun demikian secara garis besar dari karakteristik cara mengoperasikan mesin CNC dapat dilakukan dengan dua macam cara, yaitu :
a. Sistem Absolut
Pada sistem ini titik awal penempatan alat potong yang digunakan sebagai acuan adalah menetapkan titik referensi yang berlaku tetap selama proses operasi mesin berlangsung. Untuk mesin bubut, titik referensinya diletakkan pada sumbu (pusat) benda kerja yang akan dikerjakan pada bagian ujung. Sedangkan pada mesin frais, titik referensinya diletakkan pada pertemuan antara dua sisi pada benda kerja yang akan dikerjakan.
Gambar 3. Referensi Absolut
b. Sistem Incremental
Pada system ini titik awal penempatan yang digunakan sebagai acuan adalah selalu berpindah sesuai dengan titik actual yang dinyatakan terakhir. Untuk mesin bubut maupun mesin frais diberlakukan cara yang sama. Setiap kali suatu gerakan pada proses pengerjaan benda kerja berakhir, maka titik akhir dari gerakan alat potong itu dianggap sebagai titik awal gerakan alat potong pada tahap berikutnya.
Gambar 4. Referensi Inkremental
Sejalan dengan berkembangnya kebutuhan akan berbagai produk industri yang beragam dengan tingkat kesulitan yang bervariasi, maka telah dikembangkan berbagai variasi dari mesin CNC. Hal ini dimaksud untuk memenuhi kebutuhan jenis pekerjaan dengan tingkat kesulitan yang tinggi. Berikut ini diperlihatkan berbagai variasi mesin CNC.
Gambar 5. Mesin Bubut CNC Modern
Gambar 6. Mesin Frais CNC Modern
4. PC untuk Mesin CNC
PC (Personal Computer) sebagai perangkat input bagi mesin CNC sangat penting peranannya untuk memperoleh kinerja mesin CNC. Oleh karena itu setiap pabrik yang memproduksi mesin CNC juga memproduksi atau merekomendasi spesifikasi PC yang digunakan sebagai input bagi mesin CNC produksinya.
Pada mesin CNC untuk keperluan unit latih (Training Unit) atau dengan operasi sederhana, baik tampilan pada monitor maupun eksekusi program, maka PC yang dipergunakan sebagaimana pada mesin CNC jenis LOLA 200 MINI CNC, LEMU IITM, EMCO TU, maupun yang sejenis.
Gambar 7. Tampilan Monitor 1
Tampilan pada gambar di atas dihasilkan oleh PC dengan spesifikasi minimum :
.. System Unit: IBM PC or compatible (80286 and up)
.. Operating System: MS-DOS or PC-DOS version 3.0 or later
.. Main Memory: 640KB RAM minimum
.. Hard Disk Space: 2MB
.. Display: Standard VGA
.. Input Device: Mouse
Perkembangan jenis pekerjaan yang menggunakan peranan mesin CNC sejalan dengan kebutuhan teknologi manufaktur semakin meningkat. Oleh karena itu dikembangkan pula perangkat PC yang dapat melayani mesin CNC dengan kinerja yang mampu mengatasi beberapa faktor kesulitan yang dijumpai pada proses manufaktur. Gambar 8 memperlihatkan tampilan monitor mesin CNC jenis E·IPC700-ECKELMANN, DNC NT-2000, WinPromateII - Baronics, Mirac PC, CamSoft, ProMotion® iCNC, maupun yang sejenis.
Gambar 8. Tampilan Monitor 2
Tampilan pada gambar di atas dihasilkan oleh PC dengan spesifikasi minimum :
.. Processing : Pentium III 1 GHz and 133 MHz Processor Bus
.. Main : 256 MB RAM (expandable to 512 MB RAM) Single DIMM Slot Memory
.. Video : 4 MB
.. Retentive Variable Storage : 32K NVRAM (onboard) for PC Control
.. Diagnostics Functions : Watchdog Timer, Temperature and Fan Status Monitoring
.. Front LED Indicators (5) : Function (Text mode), Shift/ CAPS Lock, HDD/Error,
.. Power, Compact Flash Ready
.. Storage Device : Removable 2.5" Hard Disk Drive, 20GB
.. Compact Flash : (1) Port - Front Access – Not Supported in Windows NT
.. USB (Rev 1.0) : (1) Port - Side Access – Not Supported in Windows NT (2) Ports - Front Access – Not Supported in Windows NT
.. Serial Port : (2) RS232 serial ports Parallel
.. Parallel Port : ECP+EPP parallel port
.. Ethernet : 10/100 Base T Ethernet
.. PS/2 : PS/2 keyboard and PS/2 mouse ports
.. Expansion Slots : One PCI Slot, One PCI/ISA SlotExpansion
.. Display : 15" Active Matrix LCD (1024x 768 resolution)
.. Touch Screen Control : Standard unit does not include touch screen control. Touch screen control is a factory-installed option.
.. Vertical Side Keys : 8 keys along each side of display for PC Control. Optionally,
.. these keys may be factory configured as direct inputs to a GE Fanuc CNC via I/O Link.
.. Numeric/Control Keys : Full numberic keypad and Keyboard functions (Arrow keys, Tab, esc, space, alt, delete, ctrl, etc.)
.. Horizontal Keys : 28 keys located below display. Text mode key (locking) for
.. alpha characters. CAPS Lock key for alpha characters caps switch.
.. Floppy Disk Drive : External FDD Connector for operator panel mounting
.. Compact Disk Rom Drive : External IDE Connector for operator panel mounting
.. Power Supply : Removable 120/240 Power Supply, Auto Sensing
.. Operating System : Windows NT, Windows 2000
.. Outline Specification : 18.85in (W) x 13.86in (H) x 7.16in (D) 478.8mm (W) x 352.0mm (H) x 181.9mm (D)
.. Environmental Protection : IP65 when panel mounted
.. Standards and Certification : CE and UL Hazardous (Class1, Division 2)
5. Kode Standar Mesin CNC
Mesin CNC hanya dapat membaca kode standar yang telah disepakati oleh industri yang membuat mesin CNC. Dengan kode standar tersebut, pabrik mesin CNC dapat menggunakan PC sebagai input yang diproduksi sendiri atau yang direkomendasikan. Kode standar pada mesin CNC yaitu :
a. Mesin Bubut
1) Fungsi G
G00 : Gerakan cepat
G01 : Interpolasi linear
G02/G03 : Interpolari melingkar
G04 : Waktu tinggal diam.
G21 : Blok kosong
G24 : Penetapan radius pada
pemrograman harga absolut
G25/M17: Teknik sub program
G27 : Perintah melompat
2) Pemotongan ulir
G33 Pemotongan ulir dengan kisar tetap sama
G64 Motor asutan tak berarus
G65 Pelayanan kaset
G66 Pelayanan antar aparat RS 232
G73 Siklus pemboran dengan pemutusan
tatal
G78 Siklus penguliran
G81 Siklus pemboran
G82 Siklus pemboran dengan tinggal diam.
G83 Siklus pemboran dengan penarikan
G84 Siklus pembubutan memanjang
G85 Siklus pereameran
G86 Siklus pengaluran
G88 Siklus pembubutan melintang
G89 Siklus pereameran dengan tinggal
diam.
G90 Pemrograman harga absolut
G91 Pemrcgraman harga inkremental
G92 Pencatat penetapan
G94 Penetapan kecepatan asutan
G95 Penetapan ukuran asutan
G110 Alur permukaan
G111 Alur luar
G112 Alur dalam
G113 Ulir luar
G114 Ulir dalam
G115 Permukaan kasar
G116 Putaran kasar
3) Fungsi M
M00 Berhenti terprogram
M03 Sumbu utama searah jarum jam
M05 Sumbu utama berhenti
M06 Penghitungan panjang pahat,
penggantian pahat
M08 Titik tolak pengatur
M09 Titik tolak pengatur
Ml 7 Perintah melompat kembali
M22 Titik tolak pengatur
M23 Titik tolak pengatur
M26 Titik tolak pengatur
M30 Program berakhir
M99 Parameter lingkaran
M98 Kompensasi kelonggaran / kocak
Otomatis
b. Mesin Frais
1) Fungsi G
G00 Gerakan cepat
G01 Interpolasi lurus
G02 Interpolasi melinqkar searah iarum Jam
G03 Interpolasi melinqkar berlawanan
arah jarum jam
G04 Lamanya tingqal diam.
G21 Blok kosonq
G25 Memanqqil sub program
G27 Instruksi melompat
G40 Kompensasi radius pisau hapus
G45 Penambahan radius pirau
G46 Pengurangan radius pisau
G47 Penambahan radius pisau 2 kali
G48 Penguranqan radius pisau 2 kali
G64 Motor asutan tanpa arus (Fungsi penyetelan)
G65 Pelavanan pita magnet (Fungsi penyetetan)
G66 Pelaksanaan antar aparat dengan RS 232
G72 Siklus pengefraisan kantong
G73 Siklus pemutusan fatal
G74 Siklus penguliran (jalan kiri)
G81 Siklus pemboran tetap
G82 Siklus pemboran tetap dengan tinj diam
G83 Siklus pemboran tetap dengan pembuangantatal
G84 Siklus penquliran
G85 Siklus mereamer tetap
G89 Siklus mereamer tetap denqan tinqqal diam.
G90 Pemroqraman nilai absolut
G91 Pemroqraman nilai inkremental
G92 Penqqeseran titik referensi
2) Fungsi M
M00 Diam
M03 Spindel frais hidup.searahjarumjam
M05 Spindel frais mat!
M06 Penggeseran alat, radius pisau frais masuk
M17 Kembali ke program pokok
M08
M09
M20 Hubungan keluar
M21
M22
M23
M26 Hubungan keluar- impuls
M30 Program berakhir
M98 Kompensasi kocak / kelonggaran
otomatis
M99 Parameter dari interpolasi melingkar
(dalam hubungan dengan G02/303)
c. Tanda Alarm
A00 Salah kode G/M
A01 Salah radius/M99
A02 Salah nilaiZ
A03 Salah nilai F
A04 Salah nilai Z
A05 Tidak ada kode M30
A06 Tidak ada kode M03
A07 Tidak ada arti
A08 Pita habis pada penyimpanan ke kaset
A09 Program tidak ditemukan
A10 Pita kaset dalam pengamanan
A11 Salah pemuatan
A12 Salah pengecekan
A13 Penyetelan inchi/mm dengan memori program penuh
A14 Salah posisi kepala frais / penambahan jalan dengan LOAD - / M atau ¦ / M
A15 Salah nilai Y.
A16 Tidak ada nilai radius pisau frais
A17 Salah sub program
A18 Jalannya kompensasi radius pisau frais lebih kecil dari nol
6. Mesin CNC Generasi Baru
Operator mesin CNC yang akan memasukkan program pada mesin sebelumnya harus sudah memahami gambar kerja dari komponen yang akan dibuat pada mesin tersebut. Gambar kerja biasanya dibuat dengan cara manual atau dengan computer menggunakan program CAD (Computer Aided Design). Seiring dengan kemajuan teknologi di bidang computer, maka telah dikembangkan suatu software yang berisi aplikasi gambar teknik dengan CAD yang sudah dapat diminta untuk menampilkan program untuk dikerjakan dengan mesin CNC. Aplikasi program tersebut dikenal dengan sebutan CAM (Computer Aided
Manufacturing). Software CAM pada umumnya dibuat oleh pabrik yang membuat mesin CNC dengan tujuan untuk mengoptimalkan kinerja mesin CNC yang diproduksinya.
Dengan menggunakan software CAM, seorang operator cukup membuat gambar kerja dari benda yang akan dibuat dengan mesin CNC pada PC. Hasil gambar kerja dapat dieksekusi secara simulasi untuk melihat pelaksanaan pengerjaan benda kerja di mesin CNC melalui layer monitor. Apabila terdapat kekurangan atau kekeliruan, maka dapat diperbaiki tanpa harus kehilangan bahan. Jika hasil eksekusi simulasi sudah sesuai dengan yang diharapkan, maka program dilanjutkan dengan eksekusi program mesin. Program mesin yang sudah jadi dapat langsung dikirim ke mesin CNC melalui jaringan atau kabel atau ditransfer melalui media rekam.
Gambar 9. Tampilan Gambar Kerja dengan software CAD/CAM
Gambar 10. Tampilan Simulasi Mesin Bubut CAM
Gambar 11. Tampilan Simulasi Mesin Frais CAM
Gambar 12. a. Mesin CAD/CAM
Gambar 12.b Mesin CAD/CAM
7. Masa Depan Mesin CNC
Dengan perkembangan teknologi informasi, maka di masa datang dimungkinkan input mesin CNC dapat berasal dari gambar kerja manual yang dibaca melalui scan, kemudian diinterpretasikan oleh PC yang terkoneksi dengan mesin CNC. Hasil dari pembacaan scan akan diolah oleh software pada PC menjadi program simulasi berupa CAD/CAM. Selanjutnya hasil simulasi akan dieksekusi menjadi program mesin CNC yang siap dieksekusi untuk membuat benda kerja.
8. Kesimpulan
a. Mesin CNC sangat berperan dalam industri manufaktur yang memproduksi komponen atau bagian suatu mesin/alat yang presisi dengan jumlah massal.
b. PC sebagai input bagi mesin CNC peranannya sangat dominan dalam kinerja mesin CNC. Mesin CNC yang digunakan untuk mengerjakan benda kerja dengan tingkat kesulitan yang tinggi dibutuhkan PC dengan kinerja yang tinggi pula.
c. Mesin CNC memiliki kode standar sebagai input yang dapat dieksekusi melalui PC yang direkomendasikan oleh pabrik mesin CNC untuk mengoperasikan mesin CNC.
d. Industri pembuat mesin CNC selain menyediakan software untuk mesin CNC juga menyediakan software perancangan CAD/CAM yang bersinergi dengan mesin CNC yang diproduksinya.
Awal lahirnya mesin CNC (Computer Numerically Controlled) bermula dari 1952 yang dikembangkan oleh John Pearseon dari Institut Teknologi Massachusetts, atas nama Angkatan Udara Amerika Serikat. Semula proyek tersebut diperuntukkan untuk membuat benda kerja khusus yang rumit. Semula perangkat mesin CNC memerlukan biaya yang tinggi dan volume unit pengendali yang besar. Pada tahun 1973, mesin CNC masih sangat mahal sehingga masih sedikit perusahaan yang mempunyai keberanian dalam mempelopori investasi dalam teknologi ini. Dari tahun 1975, produksi mesin CNC mulai berkembang pesat. Perkembangan ini dipacu oleh perkembangan mikroprosesor, sehingga volume unit pengendali dapat lebih ringkas.
Dewasa ini penggunaan mesin CNC hampir terdapat di segala bidang. Dari bidang pendidikan dan riset yang mempergunakan alat-alat demikian dihasilkan berbagai hasil penelitian yang bermanfaat yang tidak terasa sudah banyak digunakan dalam kehidupan sehari-hari masyarakat banyak.
2. Jenis Mesin CNC
Di industri menengah dan besar, akan banyak dijumpai penggunaan mesin CNC dalam mendukung proses produksi. Secara garis besar, mesin CNC dibagi dalam 2 (dua) macam, yaitu :
a. Mesin bubut CNC
b. Mesin frais CNC
Gambar 1. Mesin Bubut CNC
Gambar 2. Mesin Frais CNC
3. Cara Mengoparasikan Mesin CNC
Secara umum, cara mengoperasikan mesin CNC dengan cara memasukkan perintah numeric melalaui tombol-tombol yang tersedia pada panel instrument di tiap-
tiap mesin. Setiap jenis mesin CNC mempunyai karakteristik tersendiri sesuai dengan pabrik yang membuat mesin tersebut. Namun demikian secara garis besar dari karakteristik cara mengoperasikan mesin CNC dapat dilakukan dengan dua macam cara, yaitu :
a. Sistem Absolut
Pada sistem ini titik awal penempatan alat potong yang digunakan sebagai acuan adalah menetapkan titik referensi yang berlaku tetap selama proses operasi mesin berlangsung. Untuk mesin bubut, titik referensinya diletakkan pada sumbu (pusat) benda kerja yang akan dikerjakan pada bagian ujung. Sedangkan pada mesin frais, titik referensinya diletakkan pada pertemuan antara dua sisi pada benda kerja yang akan dikerjakan.
Gambar 3. Referensi Absolut
b. Sistem Incremental
Pada system ini titik awal penempatan yang digunakan sebagai acuan adalah selalu berpindah sesuai dengan titik actual yang dinyatakan terakhir. Untuk mesin bubut maupun mesin frais diberlakukan cara yang sama. Setiap kali suatu gerakan pada proses pengerjaan benda kerja berakhir, maka titik akhir dari gerakan alat potong itu dianggap sebagai titik awal gerakan alat potong pada tahap berikutnya.
Gambar 4. Referensi Inkremental
Sejalan dengan berkembangnya kebutuhan akan berbagai produk industri yang beragam dengan tingkat kesulitan yang bervariasi, maka telah dikembangkan berbagai variasi dari mesin CNC. Hal ini dimaksud untuk memenuhi kebutuhan jenis pekerjaan dengan tingkat kesulitan yang tinggi. Berikut ini diperlihatkan berbagai variasi mesin CNC.
Gambar 5. Mesin Bubut CNC Modern
Gambar 6. Mesin Frais CNC Modern
4. PC untuk Mesin CNC
PC (Personal Computer) sebagai perangkat input bagi mesin CNC sangat penting peranannya untuk memperoleh kinerja mesin CNC. Oleh karena itu setiap pabrik yang memproduksi mesin CNC juga memproduksi atau merekomendasi spesifikasi PC yang digunakan sebagai input bagi mesin CNC produksinya.
Pada mesin CNC untuk keperluan unit latih (Training Unit) atau dengan operasi sederhana, baik tampilan pada monitor maupun eksekusi program, maka PC yang dipergunakan sebagaimana pada mesin CNC jenis LOLA 200 MINI CNC, LEMU IITM, EMCO TU, maupun yang sejenis.
Gambar 7. Tampilan Monitor 1
Tampilan pada gambar di atas dihasilkan oleh PC dengan spesifikasi minimum :
.. System Unit: IBM PC or compatible (80286 and up)
.. Operating System: MS-DOS or PC-DOS version 3.0 or later
.. Main Memory: 640KB RAM minimum
.. Hard Disk Space: 2MB
.. Display: Standard VGA
.. Input Device: Mouse
Perkembangan jenis pekerjaan yang menggunakan peranan mesin CNC sejalan dengan kebutuhan teknologi manufaktur semakin meningkat. Oleh karena itu dikembangkan pula perangkat PC yang dapat melayani mesin CNC dengan kinerja yang mampu mengatasi beberapa faktor kesulitan yang dijumpai pada proses manufaktur. Gambar 8 memperlihatkan tampilan monitor mesin CNC jenis E·IPC700-ECKELMANN, DNC NT-2000, WinPromateII - Baronics, Mirac PC, CamSoft, ProMotion® iCNC, maupun yang sejenis.
Gambar 8. Tampilan Monitor 2
Tampilan pada gambar di atas dihasilkan oleh PC dengan spesifikasi minimum :
.. Processing : Pentium III 1 GHz and 133 MHz Processor Bus
.. Main : 256 MB RAM (expandable to 512 MB RAM) Single DIMM Slot Memory
.. Video : 4 MB
.. Retentive Variable Storage : 32K NVRAM (onboard) for PC Control
.. Diagnostics Functions : Watchdog Timer, Temperature and Fan Status Monitoring
.. Front LED Indicators (5) : Function (Text mode), Shift/ CAPS Lock, HDD/Error,
.. Power, Compact Flash Ready
.. Storage Device : Removable 2.5" Hard Disk Drive, 20GB
.. Compact Flash : (1) Port - Front Access – Not Supported in Windows NT
.. USB (Rev 1.0) : (1) Port - Side Access – Not Supported in Windows NT (2) Ports - Front Access – Not Supported in Windows NT
.. Serial Port : (2) RS232 serial ports Parallel
.. Parallel Port : ECP+EPP parallel port
.. Ethernet : 10/100 Base T Ethernet
.. PS/2 : PS/2 keyboard and PS/2 mouse ports
.. Expansion Slots : One PCI Slot, One PCI/ISA SlotExpansion
.. Display : 15" Active Matrix LCD (1024x 768 resolution)
.. Touch Screen Control : Standard unit does not include touch screen control. Touch screen control is a factory-installed option.
.. Vertical Side Keys : 8 keys along each side of display for PC Control. Optionally,
.. these keys may be factory configured as direct inputs to a GE Fanuc CNC via I/O Link.
.. Numeric/Control Keys : Full numberic keypad and Keyboard functions (Arrow keys, Tab, esc, space, alt, delete, ctrl, etc.)
.. Horizontal Keys : 28 keys located below display. Text mode key (locking) for
.. alpha characters. CAPS Lock key for alpha characters caps switch.
.. Floppy Disk Drive : External FDD Connector for operator panel mounting
.. Compact Disk Rom Drive : External IDE Connector for operator panel mounting
.. Power Supply : Removable 120/240 Power Supply, Auto Sensing
.. Operating System : Windows NT, Windows 2000
.. Outline Specification : 18.85in (W) x 13.86in (H) x 7.16in (D) 478.8mm (W) x 352.0mm (H) x 181.9mm (D)
.. Environmental Protection : IP65 when panel mounted
.. Standards and Certification : CE and UL Hazardous (Class1, Division 2)
5. Kode Standar Mesin CNC
Mesin CNC hanya dapat membaca kode standar yang telah disepakati oleh industri yang membuat mesin CNC. Dengan kode standar tersebut, pabrik mesin CNC dapat menggunakan PC sebagai input yang diproduksi sendiri atau yang direkomendasikan. Kode standar pada mesin CNC yaitu :
a. Mesin Bubut
1) Fungsi G
G00 : Gerakan cepat
G01 : Interpolasi linear
G02/G03 : Interpolari melingkar
G04 : Waktu tinggal diam.
G21 : Blok kosong
G24 : Penetapan radius pada
pemrograman harga absolut
G25/M17: Teknik sub program
G27 : Perintah melompat
2) Pemotongan ulir
G33 Pemotongan ulir dengan kisar tetap sama
G64 Motor asutan tak berarus
G65 Pelayanan kaset
G66 Pelayanan antar aparat RS 232
G73 Siklus pemboran dengan pemutusan
tatal
G78 Siklus penguliran
G81 Siklus pemboran
G82 Siklus pemboran dengan tinggal diam.
G83 Siklus pemboran dengan penarikan
G84 Siklus pembubutan memanjang
G85 Siklus pereameran
G86 Siklus pengaluran
G88 Siklus pembubutan melintang
G89 Siklus pereameran dengan tinggal
diam.
G90 Pemrograman harga absolut
G91 Pemrcgraman harga inkremental
G92 Pencatat penetapan
G94 Penetapan kecepatan asutan
G95 Penetapan ukuran asutan
G110 Alur permukaan
G111 Alur luar
G112 Alur dalam
G113 Ulir luar
G114 Ulir dalam
G115 Permukaan kasar
G116 Putaran kasar
3) Fungsi M
M00 Berhenti terprogram
M03 Sumbu utama searah jarum jam
M05 Sumbu utama berhenti
M06 Penghitungan panjang pahat,
penggantian pahat
M08 Titik tolak pengatur
M09 Titik tolak pengatur
Ml 7 Perintah melompat kembali
M22 Titik tolak pengatur
M23 Titik tolak pengatur
M26 Titik tolak pengatur
M30 Program berakhir
M99 Parameter lingkaran
M98 Kompensasi kelonggaran / kocak
Otomatis
b. Mesin Frais
1) Fungsi G
G00 Gerakan cepat
G01 Interpolasi lurus
G02 Interpolasi melinqkar searah iarum Jam
G03 Interpolasi melinqkar berlawanan
arah jarum jam
G04 Lamanya tingqal diam.
G21 Blok kosonq
G25 Memanqqil sub program
G27 Instruksi melompat
G40 Kompensasi radius pisau hapus
G45 Penambahan radius pirau
G46 Pengurangan radius pisau
G47 Penambahan radius pisau 2 kali
G48 Penguranqan radius pisau 2 kali
G64 Motor asutan tanpa arus (Fungsi penyetelan)
G65 Pelavanan pita magnet (Fungsi penyetetan)
G66 Pelaksanaan antar aparat dengan RS 232
G72 Siklus pengefraisan kantong
G73 Siklus pemutusan fatal
G74 Siklus penguliran (jalan kiri)
G81 Siklus pemboran tetap
G82 Siklus pemboran tetap dengan tinj diam
G83 Siklus pemboran tetap dengan pembuangantatal
G84 Siklus penquliran
G85 Siklus mereamer tetap
G89 Siklus mereamer tetap denqan tinqqal diam.
G90 Pemroqraman nilai absolut
G91 Pemroqraman nilai inkremental
G92 Penqqeseran titik referensi
2) Fungsi M
M00 Diam
M03 Spindel frais hidup.searahjarumjam
M05 Spindel frais mat!
M06 Penggeseran alat, radius pisau frais masuk
M17 Kembali ke program pokok
M08
M09
M20 Hubungan keluar
M21
M22
M23
M26 Hubungan keluar- impuls
M30 Program berakhir
M98 Kompensasi kocak / kelonggaran
otomatis
M99 Parameter dari interpolasi melingkar
(dalam hubungan dengan G02/303)
c. Tanda Alarm
A00 Salah kode G/M
A01 Salah radius/M99
A02 Salah nilaiZ
A03 Salah nilai F
A04 Salah nilai Z
A05 Tidak ada kode M30
A06 Tidak ada kode M03
A07 Tidak ada arti
A08 Pita habis pada penyimpanan ke kaset
A09 Program tidak ditemukan
A10 Pita kaset dalam pengamanan
A11 Salah pemuatan
A12 Salah pengecekan
A13 Penyetelan inchi/mm dengan memori program penuh
A14 Salah posisi kepala frais / penambahan jalan dengan LOAD - / M atau ¦ / M
A15 Salah nilai Y.
A16 Tidak ada nilai radius pisau frais
A17 Salah sub program
A18 Jalannya kompensasi radius pisau frais lebih kecil dari nol
6. Mesin CNC Generasi Baru
Operator mesin CNC yang akan memasukkan program pada mesin sebelumnya harus sudah memahami gambar kerja dari komponen yang akan dibuat pada mesin tersebut. Gambar kerja biasanya dibuat dengan cara manual atau dengan computer menggunakan program CAD (Computer Aided Design). Seiring dengan kemajuan teknologi di bidang computer, maka telah dikembangkan suatu software yang berisi aplikasi gambar teknik dengan CAD yang sudah dapat diminta untuk menampilkan program untuk dikerjakan dengan mesin CNC. Aplikasi program tersebut dikenal dengan sebutan CAM (Computer Aided
Manufacturing). Software CAM pada umumnya dibuat oleh pabrik yang membuat mesin CNC dengan tujuan untuk mengoptimalkan kinerja mesin CNC yang diproduksinya.
Dengan menggunakan software CAM, seorang operator cukup membuat gambar kerja dari benda yang akan dibuat dengan mesin CNC pada PC. Hasil gambar kerja dapat dieksekusi secara simulasi untuk melihat pelaksanaan pengerjaan benda kerja di mesin CNC melalui layer monitor. Apabila terdapat kekurangan atau kekeliruan, maka dapat diperbaiki tanpa harus kehilangan bahan. Jika hasil eksekusi simulasi sudah sesuai dengan yang diharapkan, maka program dilanjutkan dengan eksekusi program mesin. Program mesin yang sudah jadi dapat langsung dikirim ke mesin CNC melalui jaringan atau kabel atau ditransfer melalui media rekam.
Gambar 9. Tampilan Gambar Kerja dengan software CAD/CAM
Gambar 10. Tampilan Simulasi Mesin Bubut CAM
Gambar 11. Tampilan Simulasi Mesin Frais CAM
Gambar 12. a. Mesin CAD/CAM
Gambar 12.b Mesin CAD/CAM
7. Masa Depan Mesin CNC
Dengan perkembangan teknologi informasi, maka di masa datang dimungkinkan input mesin CNC dapat berasal dari gambar kerja manual yang dibaca melalui scan, kemudian diinterpretasikan oleh PC yang terkoneksi dengan mesin CNC. Hasil dari pembacaan scan akan diolah oleh software pada PC menjadi program simulasi berupa CAD/CAM. Selanjutnya hasil simulasi akan dieksekusi menjadi program mesin CNC yang siap dieksekusi untuk membuat benda kerja.
8. Kesimpulan
a. Mesin CNC sangat berperan dalam industri manufaktur yang memproduksi komponen atau bagian suatu mesin/alat yang presisi dengan jumlah massal.
b. PC sebagai input bagi mesin CNC peranannya sangat dominan dalam kinerja mesin CNC. Mesin CNC yang digunakan untuk mengerjakan benda kerja dengan tingkat kesulitan yang tinggi dibutuhkan PC dengan kinerja yang tinggi pula.
c. Mesin CNC memiliki kode standar sebagai input yang dapat dieksekusi melalui PC yang direkomendasikan oleh pabrik mesin CNC untuk mengoperasikan mesin CNC.
d. Industri pembuat mesin CNC selain menyediakan software untuk mesin CNC juga menyediakan software perancangan CAD/CAM yang bersinergi dengan mesin CNC yang diproduksinya.
Mesin bubut
Mesin bubut/Turning Machine/Lathe Machine adalah suatu alah yang digunakan unutk menyayat benda kerja dengan menggunakan alat potong yang disebut sebagai pahat, dengan gerak utama berputar. Mesin ini mempunyai 3 Gerakan Dasar yaitu : 1. Gerak utama (berputar), 2. Gerak lurus : gerak lurus eratan atas, gerak lurus eretan melintang dan gerak lurus eretan atas dan 3. Gerak lurus kepala lepas.
Didalam membubut kita harus memperhitungkan besarnya putaran yang harus digunakan, karena bila putaran melebihi batas maksimal putarannya maka pahat akan mudah aus dan terbakar, sehinggga kita semakin sering mengasah pahat.
Putaran mesin ditentukan dari : jenis pahat/alat potong yang digunakan, jenis benda kerja, tingkat kekasaran yang dikehendaki, ketebalan pemakanan dan kondisi dari mesin bubut itu sendiri.
Komputer
Sejarah komputer sudah dimulai sejak zaman dahulu kala. Sejak dahulu kala, proses pengolahan data telah dilakukan oleh manusia. Manusia juga menemukan alat-alat mekanik dan elektronik (mechanical and electronic) untuk membantu manusia dalam penghitungan dan pengolahan data supaya bisa mendapatkan hasil lebih cepat. Computer yang kita temui saat ini adalah suatu evolusi panjang dari penemuan-penemuan manusia sejak dahulu kala berupa alat mekanik (mechanical) maupun elektronik (electronic)
Saat ini komputer dan piranti pendukungnya telah masuk dalam setiap aspek kehidupan dan pekerjaan. Computer yang ada sekarang memiliki kemampuan yang lebih dari sekedar perhitungan mathematics biasa. Diantaranya adalah sistem komputer di kassa supermarket yang mampu membaca kode barang belanja, sentral telephone yang menangani jutaan panggilan dan komunikasi, jaringan komputer dan internet yang menghubungkan berbagai tempat di dunia.
Sejarah Komputer menurut periodenya adalah:
* Alat Hitung Tradisional dan Kalkulator Mekanik
* Komputer Generasi Pertama
* Komputer Generasi Kedua
* Komputer Generasi Ketiga
* Komputer Generasi Keempat
* Komputer Generasi Kelima
ALAT HITUNG TRADISIONAL dan KALKULATOR MEKANIKAbacus, yang muncul sekitar 5000 tahun yang lalu di Asia kecil dan masih digunakan di beberapa tempat hingga saat ini dapat dianggap sebagai awal mula mesin komputasi.Alat ini memungkinkan penggunanya untuk melakukan perhitungan menggunakan biji-bijian geser yang diatur pada sebuah rak. Para pedagang di masa itu menggunakan abacus untuk menghitung transaksi perdagangan. Seiring dengan munculnya pensil dan kertas, terutama di Eropa, abacus kehilangan popularitasnya
Setelah hampir 12 abad, muncul penemuan lain dalam hal mesin komputasi. Pada tahun 1642, Blaise Pascal (1623-1662), yang pada waktu itu berumur 18 tahun, menemukan apa yang ia sebut sebagai kalkulator roda numerik (numerical wheel calculator) untuk membantu ayahnya melakukan perhitungan pajak
Kotak persegi kuningan ini yang dinamakan Pascaline, menggunakan delapan roda putar bergerigi untuk menjumlahkan bilangan hingga delapan digit. Alat ini merupakan alat penghitung bilangan berbasis sepuluh. Kelemahan alat ini adalah hanya terbatas untuk melakukan penjumlahan
Tahun 1694, seorang matematikawan dan filsuf Jerman, Gottfred Wilhem von Leibniz (1646-1716) memperbaiki Pascaline dengan membuat mesin yang dapat mengalikan. Sama seperti pendahulunya, alat mekanik ini bekerja dengan menggunakan roda-roda gerigi. Dengan mempelajari catatan dan gambar-gambar yang dibuat oleh Pascal, Leibniz dapat menyempurnakan alatnya.
Barulah pada tahun 1820, kalkulator mekanik mulai populer. Charles Xavier Thomas de Colmar menemukan mesin yang dapat melakukan empat fungsi aritmatik dasar. Kalkulator mekanik Colmar, arithometer, mempresentasikan pendekatan yang lebih praktis dalam kalkulasi karena alat tersebut dapat melakukan penjumlahan, pengurangan, perkalian, dan pembagian. Dengan kemampuannya, arithometer banyak dipergunakan hingga masa Perang Dunia I. Bersama-sama dengan Pascal dan Leibniz, Colmar membantu membangun era komputasi mekanikal.
Awal mula komputer yang sebenarnya dibentuk oleh seorang profesor matematika Inggris, Charles Babbage (1791-1871). Tahun 1812, Babbage memperhatikan kesesuaian alam antara mesin mekanik dan matematika yaitu mesin mekanik sangat baik dalam mengerjakan tugas yang sama berulangkali tanpa kesalahan; sedang matematika membutuhkan repetisi sederhana dari suatu langkah-langkah tertenu. Masalah tersebut kemudain berkembang hingga menempatkan mesin mekanik sebagai alat untuk menjawab kebutuhan mekanik. Usaha Babbage yang pertama untuk menjawab masalah ini muncul pada tahun 1822 ketika ia mengusulkan suatu mesin untuk melakukanperhitungan persamaan differensial. Mesin tersebut dinamakan Mesin Differensial. Dengan menggunakan tenaga uap, mesin tersebut dapat menyimpan program dan dapat melakukan kalkulasi serta mencetak hasilnya secara otomatis.
Setelah bekerja dengan Mesin Differensial selama sepuluh tahun, Babbage tiba-tiba terinspirasi untuk memulai membuat komputer general-purpose yang pertama, yang disebut Analytical Engine. Asisten Babbage, Augusta Ada King (1815-1842) memiliki peran penting dalam pembuatan mesin ini. Ia membantu merevisi rencana, mencari pendanaan dari pemerintah Inggris, dan mengkomunikasikan spesifikasi Analytical Engine kepada publik. Selain itu, pemahaman Augusta yang baik tentang mesin ini memungkinkannya membuat instruksi untuk dimasukkan ke dalam mesin dan juga membuatnya menjadi programmer wanita yang pertama. Pada tahun 1980, Departemen Pertahanan Amerika Serikat menamakan sebuah bahasa pemrograman dengan nama ADA sebagai penghormatan kepadanya.
Mesin uap Babbage, walaupun tidak pernah selesai dikerjakan, tampak sangat primitif apabila dibandingkan dengan standar masa kini. Bagaimanapun juga, alat tersebut menggambarkan elemen dasar dari sebuah komputer modern dan juga mengungkapkan sebuah konsep penting. Terdiri dari sekitar 50.000 komponen, disain dasar dari Analytical Engine menggunakan kartu-kartu perforasi (berlubang-lubang) yang berisi instruksi operasi bagi mesin tersebut.
Pada 1889, Herman Hollerith (1860-1929) juga menerapkan prinsip kartu perforasi untuk melakukan penghitungan. Tugas pertamanya adalah menemukan cara yang lebih cepat untuk melakukan perhitungan bagi Biro Sensus Amerika Serikat. Sensus sebelumnya yang dilakukan di tahun 1880 membutuhkan waktu tujuh tahun untuk menyelesaikan perhitungan. Dengan berkembangnya populasi, Biro tersebut memperkirakan bahwa dibutuhkan waktu sepuluh tahun untuk menyelesaikan perhitungan sensus.
Hollerith menggunakan kartu perforasi untuk memasukkan data sensus yang kemudian diolah oleh alat tersebut secara mekanik. Sebuah kartu dapat menyimpan hingga 80 variabel. Dengan menggunakan alat tersebut, hasil sensus dapat diselesaikan dalam waktu enam minggu. Selain memiliki keuntungan dalam bidang kecepatan, kartu tersebut berfungsi sebagai media penyimpan data. Tingkat kesalahan perhitungan juga dapat ditekan secara drastis. Hollerith kemudian mengembangkan alat tersebut dan menjualnya ke masyarakat luas. Ia mendirikan Tabulating Machine Company pada tahun 1896 yang kemudian menjadi International Business Machine (1924) setelah mengalami beberapa kali merger. Perusahaan lain seperti Remington Rand and Burroghs juga memproduksi alat pembaca kartu perforasi untuk usaha bisnis. Kartu perforasi digunakan oleh kalangan bisnis dn pemerintahan untuk permrosesan data hingga tahun 1960.
Pada masa berikutnya, beberapa insinyur membuat penemuan baru lainnya. Vannevar Bush (18901974) membuat sebuah kalkulator untuk menyelesaikan persamaan differensial di tahun 1931. Mesin tersebut dapat menyelesaikan persamaan differensial kompleks yang selama ini dianggap rumit oleh kalangan akademisi. Mesin tersebut sangat besar dan berat karena ratusan gerigi dan poros yang dibutuhkan untuk melakukan perhitungan. Pada tahun 1903, John V. Atanasoff dan Clifford Berry mencoba membuat komputer elektrik yang menerapkan aljabar Boolean pada sirkuit elektrik. Pendekatan ini didasarkan pada hasil kerja George Boole (1815-1864) berupa sistem biner aljabar, yang menyatakan bahwa setiap persamaan matematik dapat dinyatakan sebagai benar atau salah. Dengan mengaplikasikan kondisi benar-salah ke dalam sirkuit listrik dalam bentuk terhubung-terputus, Atanasoff dan Berry membuat komputer elektrik pertama di tahun 1940. Namun proyek mereka terhenti karena kehilangan sumber pendanaan.
Dengan terjadinya Perang Dunia Kedua, negara-negara yang terlibat dalam perang tersebut berusaha mengembangkan komputer untuk mengeksploitasi potensi strategis yang dimiliki komputer. Hal ini meningkatkan pendanaan pengembangan komputer serta mempercepat kemajuan teknik komputer. Pada tahun 1941, Konrad Zuse, seorang insinyur Jerman membangun sebuah komputer Z3, untuk mendisain pesawat terbang dan peluru kendali.
Pihak sekutu juga membuat kemajuan lain dalam pengembangan kekuatan komputer. Tahun 1943, pihak Inggris menyelesaikan komputer pemecah kode rahasia yang dinamakan Colossus untuk memecahkan kode-rahasia yang digunakan Jerman. Dampak pembuatan Colossus tidak terlalu mempengaruhi perkembangan industri komputer dikarenakan dua alasan. Pertama, colossus bukan merupakan komputer serbaguna general-purpose computer), ia hanya didisain untuk memecahkan kode rahasia. Kedua, keberadaan mesin ini dijaga kerahasiaannya hingga satu dekade setelah perang berakhir.
Usaha yang dilakukan oleh pihak Amerika pada saat itu menghasilkan suatu kemajuan lain. Howard H. Aiken (1900-1973), seorang insinyur Harvard yang bekerja dengan IBM, berhasil memproduksi kalkulator elektronik untuk US Navy. Kalkulator tersebut berukuran panjang setengah lapangan bola kaki dan memiliki rentang kabel sepanjang 500 mil. The Harvd-IBM Automatic Sequence Controlled Calculator, atau Mark I, merupakan komputer relai elektronik. Ia menggunakan sinyal elektromagnetik untuk menggerakkan komponen mekanik. Mesin tersebut beropreasi dengan lambat (ia membutuhkan 3-5 detik untuk setiap perhitungan) dan tidak fleksibel (urutan kalkulasi tidak dapat diubah). Kalkulator tersebut dapat melakukan perhitungan aritmatik dasar dan persamaan yang lebih kompleks.
Perkembangan komputer lain pada masa ini adalah Electronic Numerical Integrator and Computer (ENIAC), yang dibuat oleh kerjasama antara pemerintah Amerika Serikat dan University of Pennsylvania. Terdiri dari 18.000 tabung vakum, 70.000 resistor, dan 5 juta titik solder, komputer tersebut merupakan mesin yang sangat besar yang mengkonsumsi daya sebesar 160kW. Komputer ini dirancang oleh John Presper Eckert (1919-1995) dan John W. Mauchly (1907-1980), ENIAC merupakan komputer serbaguna (general purpose computer) yang bekerja 1000 kali lebih cepat dibandingkan Mark I.Pada pertengahan 1940-an, John von Neumann (1903-1957) bergabung dengan tim University of Pennsylvania dalam usha membangun konsep desin komputer yang hingga 40 tahun mendatang masih dipakai dalam teknik komputer.
Von Neumann mendesain Electronic Discrete Variable AutomaticComputer(EDVAC) pada tahun 1945 dengan sebuah memori untuk menampung baik program ataupun data. Teknik ini memungkinkan komputer untuk berhenti pada suatu saat dan kemudian melanjutkan pekerjaannya kembali. Kunci utama arsitektur von Neumann adalah unit pemrosesan sentral (CPU), yang memungkinkan seluruh fungsi komputer untuk dikoordinasikan melalui satu sumber tunggal. Tahun 1951, UNIVAC I (Universal Automatic Computer I) yang dibuat oleh Remington Rand, menjadi komputer komersial pertama yang memanfaatkan model arsitektur von Neumann tersebut. Baik Badan Sensus Amerika Serikat dan General Electric memiliki UNIVAC. Salah satu hasil mengesankan yang dicapai oleh UNIVAC dalah keberhasilannya dalam memprediksi kemenangan Dwilight D. Eisenhower dalam pemilihan presiden tahun 1952.
Komputer Generasi pertama dikarakteristik dengan fakta bahwa instruksi operasi dibuat secara spesifik untuk suatu tugas tertentu. Setiap komputer memiliki program kode-biner yang berbeda yang disebut “bahasa mesin” (machine language). Hal ini menyebabkan komputer sulit untuk diprogram dan membatasi kecepatannya. Ciri lain komputer generasi pertama adalah penggunaan tube vakum (yang membuat komputer pada masa tersebut berukuran sangat besar) dan silinder magnetik untuk penyimpanan data.
Pada tahun 1948, penemuan transistor sangat mempengaruhi perkembangan komputer. Transistor menggantikan tube vakum di televisi, radio, dan komputer. Akibatnya, ukuran mesin-mesin elektrik berkurang drastis. Transistor mulai digunakan di dalam komputer mulai pada tahun 1956. Penemuan lain yang berupa pengembangan memori inti-magnetik membantu pengembangan komputer generasi kedua yang lebih kecil, lebih cepat, lebih dapat diandalkan, dan lebih hemat energi dibanding para pendahulunya. Mesin pertama yang memanfaatkan teknologi baru ini adalah superkomputer. IBM membuat superkomputer bernama Stretch, dan Sprery-Rand membuat komputer bernama LARC. Komputer-komputer ini, yang dikembangkan untuk laboratorium energi atom, dapat menangani sejumlah besar data, sebuah kemampuan yang sangat dibutuhkan oleh peneliti atom. Mesin tersebut sangat mahal dan cenderung terlalu kompleks untuk kebutuhan komputasi bisnis, sehingga membatasi kepopulerannya. Hanya ada dua LARC yang pernah dipasang dan digunakan: satu di Lawrence Radiation Labs di Livermore, California, dan yang lainnya di US Navy Research and Development Center di Washington D.C. Komputer generasi kedua menggantikan bahasa mesin dengan bahasa assembly. Bahasa assembly adalah bahasa yang menggunakan singkatan-singkatan untuk menggantikan kode biner.
Pada awal 1960-an, mulai bermunculan komputer generasi kedua yang sukses di bidang bisnis, di universitas, dan di pemerintahan. Komputer-komputer generasi kedua ini merupakan komputer yang sepenuhnya menggunakan transistor. Mereka juga memiliki komponen-komponen yang dapat diasosiasikan dengan komputer pada saat ini: printer, penyimpanan dalam disket, memory, sistem operasi, dan program. Salah satu contoh penting komputer pada masa ini adalah IBM 1401 yang diterima secara luas di kalangan industri. Pada tahun 1965, hampir seluruh bisnis-bisnis besar menggunakan komputer generasi kedua untuk memproses informasi keuangan.
Program yang tersimpan di dalam komputer dan bahasa pemrograman yang ada di dalamnya memberikan fleksibilitas kepada komputer. Fleksibilitas ini meningkatkan kinerja dengan harga yang pantas bagi penggunaan bisnis. Dengan konsep ini, komputer dapat mencetak faktur pembelian konsumen dan kemudian menjalankan desain produk atau menghitung daftar gaji. Beberapa bahasa pemrograman mulai bermunculan pada saat itu. Bahasa pemrograman Common Business-Oriented Language (COBOL) dan Formula Translator (FORTRAN) mulai umum digunakan. Bahasa pemrograman ini menggantikan kode mesin yang rumit dengan kata-kata, kalimat, dan formula matematika yang lebih mudah dipahami oleh manusia. Hal ini memudahkan seseorang untuk memprogram dan mengatur komputer. Berbagai macam karir baru bermunculan (programmer, analyst, dan ahli sistem komputer). Industri piranti lunak juga mulai bermunculan dan berkembang pada masa komputer generasi kedua ini.
Walaupun transistor dalam banyak hal mengungguli tube vakum, namun transistor menghasilkan panas yang cukup besar, yang dapat berpotensi merusak bagian-bagian internal komputer. Batu kuarsa (quartz rock) menghilangkan masalah ini. Jack Kilby, seorang insinyur di Texas Instrument, mengembangkan sirkuit terintegrasi (IC: integrated circuit) di tahun 1958. IC mengkombinasikan tiga komponen elektronik dalam sebuah piringan silikon kecil yang terbuat dari pasir kuarsa. Para ilmuwan kemudian berhasil memasukkan lebih banyak komponen-komponen ke dalam suatu chip tunggal yang disebut semikonduktor. Hasilnya, komputer menjadi semakin kecil karena komponen-komponen dapat dipadatkan dalam chip. Kemajuan komputer generasi ketiga lainnya adalah penggunaan sistem operasi (operating system) yang memungkinkan mesin untuk menjalankan berbagai program yang berbeda secara serentak dengan sebuah program utama yang memonitor dan mengkoordinasi memori komputer.
Setelah IC, tujuan pengembangan menjadi lebih jelas yaitu mengecilkan ukuran sirkuit dan komponen-komponen elektrik. Large Scale Integration (LSI) dapat memuat ratusan komponen dalam sebuah chip. Pada tahun 1980-an, Very Large Scale Integration (VLSI) memuat ribuan komponen dalam sebuah chip tunggal.Ultra-Large Scale Integration (ULSI) meningkatkan jumlah tersebut menjadi jutaan. Kemampuan untuk memasang sedemikian banyak komponen dalam suatu keping yang berukuran setengah keping uang logam mendorong turunnya harga dan ukuran komputer. Hal tersebut juga meningkatkan daya kerja, efisiensi dan kehandalan komputer. Chip Intel 4004 yang dibuat pada tahun 1971 membawa kemajuan pada IC dengan meletakkan seluruh komponen dari sebuah komputer (central processing unit, memori, dan kendali input/output) dalam sebuah chip yangsangat kecil. Sebelumnya, IC dibuat untuk mengerjakan suatu tugas tertentu yang spesifik. Sekarang, sebuah mikroprosesor dapat diproduksi dan kemudian diprogram untuk memenuhi seluruh kebutuhan yang diinginkan. Tidak lama kemudian, setiap perangkat rumah tangga seperti microwave oven, televisi, dan mobil dengan electronic fuel injection dilengkapi dengan mikroprosesor.
Perkembangan yang demikian memungkinkan orang-orang biasa untuk menggunakan komputer biasa. Komputer tidak lagi menjadi dominasi perusahaan-perusahaan besar atau lembaga pemerintah. Pada pertengahan tahun 1970-an, perakit komputer menawarkan produk komputer mereka ke masyarakat umum. Komputer-komputer ini, yang disebut minikomputer, dijual dengan paket piranti lunak yang mudah digunakan oleh kalangan awam. Piranti lunak yang paling populer pada saat itu adalah program word processing dan spreadsheet. Pada awal 1980-an, video game seperti Atari 2600 menarik perhatian konsumen pada komputer rumahan yang lebih canggih dan dapat diprogram.Pada tahun 1981, IBM memperkenalkan penggunaan Personal Computer (PC) untuk penggunaan di rumah, kantor, dan sekolah. Jumlah PC yang digunakan melonjak dari 2 juta unit di tahun 1981 menjadi 5,5 juta unit di tahun 1982. Sepuluh tahun kemudian, 65 juta PC digunakan. Komputer melanjutkan evolusinya menuju ukuran yang lebih kecil, dari komputer yang berada di atas meja (desktop computer) menjadi komputer yang dapat dimasukkan ke dalam tas (laptop), atau bahkan komputer yang dapat digenggam (palmtop).
IBM PC bersaing dengan Apple Macintosh dalam memperebutkan pasar komputer. Apple Macintosh menjadi terkenal karena mempopulerkan sistem grafis pada komputernya, sementara saingannya masih menggunakan komputer yang berbasis teks. Macintosh juga mempopulerkan penggunaan piranti mouse.
Pada masa sekarang, kita mengenal perjalanan IBM compatible dengan pemakaian CPU: IBM PC/486, Pentium, Pentium II, Pentium III, Pentium IV (Serial dari CPU buatan Intel). Juga kita kenal AMD k6, Athlon, dsb. Ini semua masuk dalam golongan komputer generasi keempat. Seiring dengan menjamurnya penggunaan komputer di tempat kerja, cara-cara baru untuk menggali potensi terus dikembangkan. Seiring dengan bertambah kuatnya suatu komputer kecil, komputer-komputer tersebut dapat dihubungkan secara bersamaan dalam suatu jaringan untuk saling berbagi memori, piranti lunak, informasi, dan juga untuk dapat saling berkomunikasi satu dengan yang lainnya. Komputer jaringan memungkinkan komputer tunggal untuk membentuk kerjasama elektronik untuk menyelesaikan suatu proses tugas. Dengan menggunakan perkabelan langsung (disebut juga local area network, LAN), atau kabel telepon, jaringan ini dapat berkembang menjadi sangat besar.
Mendefinisikan komputer generasi kelima menjadi cukup sulit karena tahap ini masih sangat muda. Contoh imajinatif komputer generasi kelima adalah komputer fiksi HAL9000 dari novel karya Arthur C. Clarke berjudul 2001:Space Odyssey. HAL menampilkan seluruh fungsi yang diinginkan dari sebuah komputer generasi kelima. Dengan kecerdasan buatan (artificial intelligence), HAL dapat cukup memiliki nalar untuk melakukan percapakan dengan manusia, menggunakan masukan visual, dan belajar dari pengalamannya sendiri.
Walaupun mungkin realisasi HAL9000 masih jauh dari kenyataan, banyak fungsi-fungsi yang dimilikinya sudah terwujud. Beberapakomputer dapat menerima instruksi secara lisan dan mampu meniru nalar manusia. Kemampuan untuk menterjemahkan bahasa asing juga menjadi mungkin. Fasilitas ini tampak sederhan. Namun fasilitas tersebut menjadi jauh lebih rumit dari yang diduga ketika programmer menyadari bahwa pengertian manusia sangat bergantung pada konteks dan pengertian daripada sekedar menterjemahkan kata-kata secara langsung.
Banyak kemajuan di bidang disain komputer dan teknologi semakin memungkinkan pembuatan komputer generasi kelima. Dua kemajuan rekayasa yang terutama adalah kemampuan pemrosesan paralel, yang akan menggantikan model von Neumann. Model von Neumann akan digantikan dengan sistem yang mampu mengkoordinasikan banyak CPU untuk bekerja secara serempak. Kemajuan lain adalah teknologi superkonduktor yang memungkinkan aliran elektrik tanpa ada hambatan apapun, yang nantinya dapat mempercepat kecepatan informasi.
Jepang adalah negara yang terkenal dalam sosialisasi jargon dan proyek komputer generasi kelima. Lembaga ICOT (Institute for new Computer Technology) juga dibentuk untuk merealisasikannya. Banyak kabar yang menyatakan bahwa proyek ini telah gagal, namun beberapa informasi lain bahwa keberhasilan proyek komputer generasi kelima ini akan membawa perubahan baru paradigma komputerisasi di dunia. Kita tunggu informasi mana yang lebih valid dan membuahkan hasil
Subscribe to:
Posts (Atom)